Fonctions: exercice

Les réponses (non détaillées) aux questions sont disponibles à la fin du document

Exercice 1:

Déterminer si la fonction f est paire, impaire ou ni l'une ni l'autre dans les cas suivants :

1) f définie sur \mathbb{R} par f(x) = 3x

2) f définie sur \mathbb{R} par $f(x) = x^2 + x$

3) f définie sur \mathbb{R} par $f(x) = x^3 - 2x$

4) f définie sur \mathbb{R} par $f(x) = \sqrt{2x^2 + 3}$

5) f définie sur $\mathbb{R} - \{-2; 2\}$ par $f(x) = \frac{3}{x^2 - 4}$

6) f définie sur $\mathbb{R} - \{2\}$ par $f(x) = \frac{1}{2-x}$

7) f définie sur \mathbb{R}^* par $f(x) = 1 - \frac{1}{x^2}$

Exercice 2:

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + 2x - 2$.

1) Tracer la courbe représentative de la fonction f dans un repère orthonormé d'unité 1 cm à l'aide du tableau de valeurs suivant :

х	-4	-3	-2	-1	0	1	2
f(x)							

- 2) Résoudre graphiquement dans l'intervalle [-4; 2]:
 - l'équation f(x) = 1
 - l'équation f(x) = -x 2
 - l'inéquation $f(x) \leq -2$

Exercice 3:

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{1+x^2}$.

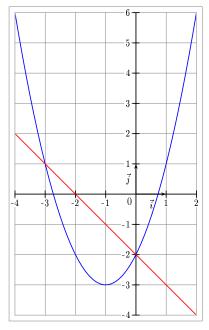
- 1) Étudier la parité de f.
- 2) On admet que f est décroissante sur $[0; +\infty[$. En déduire, d'après la question précédente, le sens de variation de f sur $]-\infty; 0]$. Dresser alors le tableau de variations de f sur \mathbb{R} .
- 3) Montrer que pour tout réel x, $0 \le f(x) \le 1$.

Réponses exercice 1 :

- 1) f est impaire (D_f est symétrique par rapport à 0 et f(-x) = -f(x))
- 2) f est ni paire, ni impaire (D_f est symétrique par rapport à 0 mais $f(-x) \neq f(x)$ et $f(-x) \neq -f(x)$)
- 3) f est impaire (D_f est symétrique par rapport à 0 et f(-x) = -f(x))
- 4) f est paire (D_f est symétrique par rapport à 0 et f(-x) = f(x))
- 5) f est paire (D_f est symétrique par rapport à 0 et f(-x) = f(x))
- 6) f est ni paire, ni impaire (D_f n'est pas symétrique par rapport à 0)
- 7) f est paire (D_f est symétrique par rapport à 0 et f(-x) = f(x))

Réponses exercice 2 :

1) La courbe de la fonction f est tracée en bleu et la droite d'équation y = -x - 2 est tracée en rouge.



2)

- f(x) = 1: $S = \{-3, 1\}$ (abscisses des points de la courbe d'ordonnée égale à 1)
- $f(x) = -x 2S = \{-3, 0\}$ (abscisses des points d'intersection entre la courbe et la droite d'équation y = -x 2)
- $f(x) \le -2$: S = [-2;0] (abscisses des points de la courbe d'ordonnée inférieure ou égale à -2)

Réponses exercice 3 :

- 1) f est paire (D_f est symétrique par rapport à 0 et f(-x) = f(x))
- 2) f est croissante sur $]-\infty$; 0] (en utilisant la symétrie due au fait que f est paire).

x	$-\infty$	0	$+\infty$
f(x)		1	

3) Pour tout x, f(x) est positif comme quotient de deux nombres positifs et f admet 1 comme maximum d'après le tableau de variations.